Каталог
 
 
 
 
 
 
Популярные теги
 
 
 
 
 

техника

современного

дома

 
Таблицы подбора котлов
 

 

 
Твердотопливный и… конденсационный?
 
 

06 марта 2013 г.

Вернуться к списку новостей

Твердотопливный и… конденсационный?

С. Трехов

Одно из направлений повышения эффективности теплогенерирующего оборудования – максимально использование энергии топлива. Это не только полное вовлечение его в реакцию и снижение теплопотерь с отходящими газами, но и использование высшей теплоты сгорания, успешно реализуемое в различных типах конденсационных котлов: газовых, жидкотопливных и даже… твердотопливных.

 У большинства специалистов такой «экзотический» тип теплогенератора может вызвать недоумение: ведь хорошо известно, что не только жидкотопливные, но и использующие пропан-бутановую смесь конденсационные котлы заметно уступают в эффективности работающим на природном газе. В то же время возможность утилизировать скрытую теплоту парообразования потенциально существует для всех типов теплогенераторов, в которых сгорают углеводороды: один из продуктов реакции – вода в газовой фазе. Поэтому существует теоретическая энергетическая «дельта Q» между высшей и низшей теплотой сгорания. И ничто в принципе не мешает сделать биотопливный котел конденсационным (рис. 0). 

Рис.0 
 
Лидирует природный газ 
При горении углеводородного топлива конечными продуктами являются оксид углерода II и вода, которая получается в газовой фазе (пар). Очевидно, что этот пар имеет определенный запас энергии – скрытую теплоту конденсации, которую можно утилизировать при фазовом переходе. Это количество тепла – разность значений высшей и низшей теплоты сгорания. При прочих равных условиях эта разность будет тем больше, чем больше образуется пара при сгорании топлива, т. е. зависит от его вида. Так, у природного газа высшая теплота сгорания – 37,7 МДж/м3 , низшая – 34 МДж/м3. А теоретически энергетический «довесок» за счет конденсации пара – продукта реакции горения – может составить для природного газа 11 %, сжиженного пропан-бутана – 9, дизельного топлива – 6, биотоплива – 2–3 %. 
В общем виде уравнение реакции углеводородов с кислородом можно записать так: 
CmHn + (m + n/4) O2 = mCO2 + (n/2) Н2O + Q, 
где m, n – число атомов углерода и водорода в молекуле; Q – тепловой эффект реакции (теплота сгорания). Для целлюлозы уравнение выглядит как:
6Н10О5)n + 6n О2 -----> 6n CO2 + 5n H2
Для природного газа (метана): 
CH4 +2O2=CO2+2H2O.
В качестве окислителя при сжигании топлива в котельных агрегатах используется атмосферный воздух, который представляет собой смесь газов – 21 об. % кислорода, 78 % азота и один процент – оксида углерода II, инертных газов и др. Для технических расчетов обычно принимают условный двухкомпонентный состав – кислорода – 21 и азота – 79 об. %. Поэтому для полного сжигания топлива воздуха по объему потребуется в 100/21 = 4,76 раза больше, чем кислорода. 
Нетрудно заметить, что для сжигания одной грамм-молекулы целлюлозы потребуется шесть молей кислорода (а значит, 30 – воздуха), а метана – только 10, при этом объем воды в газовой фазе получится во втором случае вдвое больше, чем топлива и оксида углерода II.
 
Особенности горения биотоплива
Для начала реакции дерево сначала нужно нагреть до определенной температуры. Источником тепла может послужить как открытый огонь – горящий участок полена, щепки, брикета, так и электрический термоэлемент. При достижении температуры около 150 °С начинается постепенное обугливание дерева с образованием самовоспламеняющегося угля. При 300 °С начинается процесс активного термического разложения древесины, при котором из обуглившегося слоя выделяется белый или бурый дым. Он состоит из продуктов термического разложения древесины и пара. Температура зоны разогрева может резко увеличиться за счет теплоты от сгорания пиролизных газов, температура вспышки которых лежит в пределах 250–300 °С. Воспламенение древесины происходит при температуре, превышающей 450–470 °С. Решающее значение для начала горения имеет плотность материала, как плотность материала, так и влажность. Так, пористая древесина ольхи или тополя воспламеняется быстрее, чем плотная – бука или дуба. Мокрая древесина труднее воспламеняется, потому что вначале необходимо израсходовать дополнительное количество теплоты на испарение воды. Замедляющим фактором также является повышенная теплопроводность мокрой древесины; загоревшийся поверхностный слой ее скорее охлаждается. 
Принципиально важным и непременным условием для воспламенения и горения любого вещества является достаточный приток кислорода и концентрация теплоты горения, которая не рассеивается, а идет на прогрев новых смежных участков топлива до температуры воспламенения. Таким образом, даже эффективное горение дров или опилок в обычных твердотопливных котлах сопровождается значительными (20 и более процентов) потерями тепла с отходящими газами за счет повышенной влажности и коэффициента избытка воздуха.
 
Стоит ли овчинка выделки?
Теоретически значительная экономия топлива у газовых конденсационных аппаратов, окупающая их повышенную стоимость, становится почти вдвое меньше у жидкотопливных и совсем небольшой – у биотопливных котлов. При сжигании угля получить какой-то дополнительный энергетический выход и теоретически проблематично. 
Но производители конденсационных биотвердотопливных котлов, дровяных или пеллетных приводят данные, согласно которым обеспечивается дополнительное поступление до 15 % энергии, а КПД – достигать 97 %. Количество дополнительно получаемого тепла зависит не только от абсолютных значений выхода пара, но и от его концентраций, объемного процента в дымовых газах. Причем, чем он меньше, тем ниже температура точки росы для продуктов реакции, при которой достижим конденсационный режим, ниже должна быть и температура обратки. Теоретически она должна была доходить до 20 ˚С.
Строго говоря, в этом случае утилизируется скрытая теплота парообразования. Однако в дымовых газах содержится также поступившая с воздухом вода в газовой фазе (она нагревается, воспринимая выделившуюся при горении энергию за счет теплоемкости) и пар, образовавшийся при фазовом переходе влаги топлива – в ней заключается энергия, затраченная как на фазовый переход, так и на нагрев до температуры продуктов реакции. Зачастую подсчитывая энергетический выход при конденсационном режиме к дополнительно получаемому теплу относят и эти две составляющих. И тогда при конденсационном режиме эффективность может оказаться даже выше теоретической достижимой по стехиометрическим уравнениям.
С формальной точки зрения это энергия рекуперации – возврат первоначально затраченной, и к получаемому дополнительному теплу за счет использования высшей теплоты сгорания она не относится. Однако на практике иногда между ними ставится знак тождества.
Для газовых и жидкотопливных котлов такой «довесок» невелик. Например, содержание влаги в дизельном топливе составляет лишь доли процента. Но при использовании биотоплива – дров, опилок, брикетов, пеллет экономия за счет рекуперации (обратного фазового перехода пар/жидкость) может составлять уже несколько процентов, а температура точки росы дымовых газов (в зависимости от влажности топлива) превышать 40 и даже 50 ˚С. Поэтому правильнее было бы, говоря о конденсационных твердотопливных котлах, все же подчеркивать эту их специфическую особенность – конденсационно-рекуперационный режим. 
Так, влажность дров может доходить до 30–50 %, пеллет – до 12 %. И если сложить энергию конденсации пара, полученного как продукт реакции, и энергию, затраченную на испарение влаги и возвращенную в систему теплоснабжения при обратном (пар–вода) переходе, то «овчинка» – твердотопливный конденсационный котел действительно может стоить выделки.
 
Первые «ласточки»
Чтобы перечислить компании, которые выпускают твердотопливные конденсационные котлы, вполне хватит пальцев на одной руке. Компания ÖkoFEN (Австрия) первой в мире в 2004 г. приступила к производству биотопиливных котлов, реализующих конденсационный режим (рис. 1).
 
Рис. 1. Биотопливный конденсационный котел Pellematic
 
 
В настоящее время серии представлены рядом моделей мощностью 8–56 кВт. Сдвоенные, тандемные модули имеют мощность до 112, объединенные в каскады (четыре котла) – 224 кВт. Серия компактных биотопливных котлов Pellematic Mini рассчитана на применение в домах с низким энергопотреблением (low energy buildings) и пассивных домах.
В серии биотопливных конденсационных котлов Pellematic Plus используются новейшие технологии, позволяющие обеспечивать жесткие современные стандарты эффективности и экологичности (рис. 2).
 
 
Рис. 2. Конструкция котла Pellematic Plus
 
По данным компании, конденсационный режим обеспечивает дополнительный 10–15 % приток тепла. Обязательное условие для него – низкая (30 ˚C) температура теплоносителя в обратной линии, характерная для напольного отопления или систем с нагревательными панелями. При этом температура дымовых газов находится в диапазоне 30–40 ˚С. Модели этой серии характеризуются низким уровнем эмиссии вредных компонентов, полностью автоматизированным режимом работы, автоматическим зажиганием и сравнительно небольшими габаритными размерами и массой. Например, модель мощностью 3,9 кВт требует для своей установки 1,5 м2 площади. Разработанная компанией программа Gewebetank позволяет в максимальной степени использовать преимущества такого типа биотопливных котлов в системе отопления для домов с низкой энергетикой.
Пеллетные конденсационные котлы Wood Pellets Spira (рис. 3) как для внутренней, так и для наружной установки производит также компания Grant (Великобритания).
 

Рис. 3. Котел Wood Pellets Spira
 
Работа этих полностью автоматизированных котлов схожа с работой жидкототопливных или газовых, а регулирование осуществляется за счет количества топлива, доставляемого к горелке с помощью шнекового питателя из бункера емкостью 110 кг. Оснащенные турбулизаторами теплообменники (первичный и вторичный, конденсационный) выполнены из нержавеющей стали (рис. 4).
 

Рис. 4. Схема работы пеллетного конденсационного котла
 

Котлы мощностью до 26 кВт имеют КПД до 97,4 %, мощностью 36 кВт – 93,1 %. Для получение большей мощности предусмотрено возможность парной работы теплогенераторов – 26 + 26 (52) кВт; 26 + 36 (62) и 36 + 36 (72) кВт. В этом случае модуляция мощности за счет объема подачи пеллет, может осуществляться с 25 % от максимальной. Оригинальная система самоочистки котла при помощи образующегося конденсата позволяет проводить ее лишь один раз в течение года.

 

Информация предоставлена сайтом https://www.aqua-therm.ru

 
 
 

Котельное оборудование Wirbel
Электрические котлы ELM 3-95 kW | Твердотопливные стальные котлы EKO 14-80 kW | Твердотопливные стальные котлы с ТЭНами EKO EL 14-80 kW | Универсальные стальные котлы ECO-TK 15-110 kW | Универсальные стальные котлы ECO-CK 20-110 kW | Твердотопливные стальные котлы ECO-TKS 125-550 kW | Твердотопливные стальные котлы ECO-CKS 150-500 kW | Моноблочные пеллетные котлы 12-300 kW | Пеллетные камины 8-25 kW | Пеллетные котлы ECO-CK PELLET 20-90 kW | Пеллетные котлы EKO 3 PELLET 20-90 kW | Котельные установки для работы на пеллетах 140-560 kW | Баки аккумуляторы CAS 500-4000 | Двухконтурные универсальные котлы ECO-CKB 20-50 kW | Комбинированные котлы ECO-CK plus 25-50 kW | Двухконтурные комбинированные котлы ECO-CKB plus 25-35 kW | Комбинированные пеллетные котлы ECO-CK Pellet Plus 25-35 kW | Комбинированные пеллетные котлы ECO-CKB Pellet Plus 25-35 kW | Пиролизные котлы BIO-TEC 25-40 kW | Принадлежности и комплектующие | Автоматика и элементы обвязки | Горелочные устройства | Бойлеры косвенного нагрева | Дымоходы из нержавеющей стали | Пеллетное оборудование | Антифриз для систем отопления

 
Таблица сравнений
 
 

Данный сайт является информационный и не несет в себе продажи. Сайт можно купить обратившись info@tort-market.ru

 
 
 
 
 
Информация
 
 

ОБЗОР ЦЕН ПЕЛЛЕТНЫХ КОТЛОВ

11 декабря 2017 г.

TOBY - моноблочные котлы на пеллетах

11 декабря 2017 г.

WIRBEL ECO-CK110 на Соловках.

01 августа 2017 г.

Cовременный твердотопливный котел

24 марта 2017 г.

Монтаж дымохода

20 марта 2017 г.

Твердотопливные котлы для отопления частного дома

16 марта 2017 г.

Оборудование SALUS для комфортного и экономного управления отоплением

21 декабря 2016 г.

Монтаж систем отопления, водоснабжения и канализации

23 июня 2016 г.

Отопление школы твердотопливным котлом

08 июня 2016 г.

Котлы на твердом топливе для отопления частного дома

30 мая 2016 г.

Котел на дачу. Котлы отопительные для дома и дачи. Котел для отопления на дачу.

24 мая 2016 г.

Котлы отопления по максимальной скидке в Москве!

12 мая 2016 г.

Твердотопливные котлы

21 апреля 2016 г.

Отопление твердотопливным котлом

30 марта 2016 г.

Твердотопливные котлы длительного горения с водяным контуром для дома

15 марта 2016 г.

Подписаться